

Спецификация Датчик тока на эффекте Холла

PN:CHK-DAB5S2L

 $I_{PN} = 200A \sim 1000A$

Особенность

- Датчик тока на эффекте Холла с разомкнутым контуром
- Напряжение питания: DC +5.0V
- Возможность измерения тока: DC, AC, импульсный ток с гальванической развяской между первичной цепью и вторичной цепью.
- Датчик соотношения
- Применение при низком напряжении
- Максимально допустимый ток определяется шиной T<+150 ° C
- Диапазон рабочей температуры: −40 ° C<T<+125 ° C
- Выходное напряжение: полностью пропорционально чувствительности и сдвигу

Преимущества

- Высокая точность, очень хорошая линейность
- Низкий температурный дрейф
- Оптимизированное время отклика, нет потери при вводе
- Выоская устойчивость к внешним помехам

Применения

- •Система рулевого управления с электрическим усилителем
- Запуск выработки электроэнергии
- Преобразователь
- Мониторинг аккумуляторной батареи
- Приложение с приводом от двигатели

RoHS

Конечные рабочие параметры:

Параметр	СИМВОЛ	ЕДИНИ ЦА(UNIT)	VALUE			
			MIN.	тип.	MAX.	УСЛОВИЯ
Максимальное напряжение питания	$U_{\rm C}$	V	-14	-	14	
Сопротивление изоляции	R _{IS}	ΜΩ	500	-	-	500V DC-ISO 16750
Расстояние электробезопасности	d_{CI}	mm		3.0		
Расстояние утечки	d_{CP}	mm		3.0		
Относительный показатель утечки	C_{TI}			P _{LC3}		
Максимальный выходной ток	I _{OUT}	mA	-10	-	10	Продолжительный выход
Максимальное выходное напряжение(аналоговое)		V	-14	-	14	Выходное перенапряжение, 1min@25°C

Cheemi Technology Co., Ltd

Tel: 025-85996365 E-mail: info@cheemi-tech.com www. cheemi-tech.com Add:N22, Xianlongwan, Xianyin South Road, Qixia District, Nanjing - China.

Cheemi Technology Co., Ltd

Общие рабочие параметры:

	СИМВОЛ	ЕДИНИ		VALUE		условия
Параметры		ЦА(UNIT	MIN.	тип.	MAX.	
Напряжение питания	$U_{\rm C}$	V	4.75	5	5.25	
Потребление тока	$I_{\rm C}$	mA	-	15	20	$@T_A = 25^{\circ}C, Uc = 5V$
Выходный ток	$I_{\rm C}$	mA	-1		1	
Сопротивление нагрузки	$R_{\rm L}$	ΚΩ	10		-	
Выходное сопротивление	R _{OUT}	Ω	1	-	10	
Ёмкостная нагрузка	C_L	nF	1	-	100	
Рабочая температура	T_{A}	°C	-40		125	
Параметр производительн	ости кан	ала 1:				
Номинальный измерительный ток	I_{PN}	A	-		-	${ m B}$ соответствии с моделью ${ m \pm 20\pm 100}$
Нулевое напряжение	Uo	V		2.5		@Uc = 5V
Номинальный выход $^{1)}$	Uout	V	Uout =	$(UC/5) \times (Uo$	$+S \times IP$)	$@T_A = 25^{\circ}C$
Чувствительночть	S	mV/A	-	$2000/I_{PN}$	-	@Uc = 5V
Выходное напряжение ограничения min	U_{SZ}	V	0.2	0.25	0.3	@Uc = 5V
Выходное напряжение ограничения тах			4.7	4.75	4.8	@Uc = 5V
Пропорциональная погрешность	εr	%	-0.6		0.6	
Ошибка чувствительности	εS	%		±0.4		$@T_A = 25^{\circ}C$
				±1.0		@-10°C <t<sub>A<65°C</t<sub>
				±1.5		@-40°C <t<sub>A<125°C</t<sub>
Диапазон напряжения электронного сдвига	U_{OE}	mV		±10		$@T_A = 25^{\circ}C,Uc=5V$
Диапазон напряжения магнитного сдвига	U _{OM}	mV		±5		$@T_A = 25^{\circ}C, Uc=5V, after \\ \pm I_P$
Ошибка линейности	εL	%	-	±0.5	-	$@T_A = 25^{\circ}C,Uc=5V$
Температурный коэффициент нулевого напряжения	TCU _O E AV	mV/°C	-0.1		+0.1	@-40°C <t<sub>A<125°C</t<sub>
Температурный коэффициент выходного напряжения	TCU _O utav	%/°C	-0.08	±0.04	+0.08	@-40°C <t<sub>A<125°C</t<sub>
Время отклика	tr	μs		4	6	@ 90% of I _{PN}
Ширина полосы ²⁾	BW	KHz		1.1		@-3dB

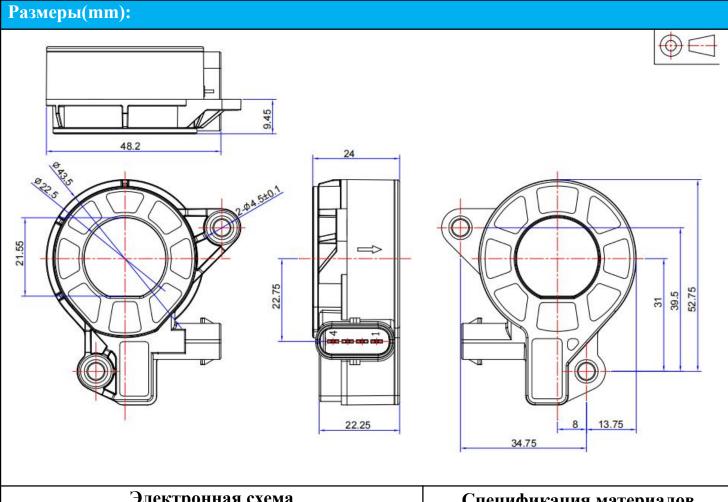
Cheemi Technology Co. Itd

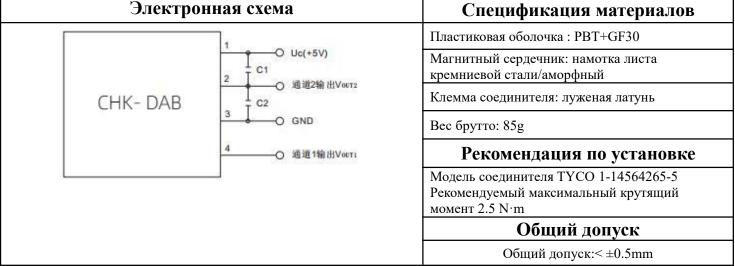
Cheemi Technology C				1	T	
Выходной шум	U _{no pp}	mV			15	
Параметр производительно	ости кан	ала 2:				
Номинальный измерительный ток	I_{PN}	A	-		-	В соответствии с моделью: ±200 ±1000
Нулевое напряжение	Uo	V		2.5		@Uc = 5V
Номинальный выход 1)	U _{out}	V	Uout =	(UC/5) × (Uc	$O + S \times IP$	$@T_A = 25^{\circ}C$
Чувствительночть	S	mV/A	-	2000/I _{PN}	-	@Uc = 5V
Выходное напряжение ограничения min	U _{SZ}	V	0.2	0.25	0.3	@Uc = 5V
Выходное напряжение ограничения тах			4.7	4.75	4.8	$@\mathrm{Uc} = 5\mathrm{V}$
Пропорциональная погрешность	εr	%	-0.6		0.6	
Ошибка чувствительности	εS	%		±0.4		$@T_A = 25^{\circ}C$
				±0.8		@-10°C <t<sub>A<65°C</t<sub>
	63			±1.2		@-40°C <t<sub>A<125°C</t<sub>
Диапазон напряжения электронного сдвига	U_{OE}	mV		±10		$@T_A = 25^{\circ}C, Uc = 5V$
Диапазон напряжения магнитного сдвига	U _{OM}	mV		±5		$@T_A = 25^{\circ}C, U_C = 5V, after \\ \pm I_P$
Ошибка линейности	εL	%	-	±0.5	-	$@T_A = 25^{\circ}C,Uc=5V$
Температурный коэффициент нулевого напряжения	TCUo	mV/°C	-0.1		+0.1	@-40°C <t<sub>A<125°C</t<sub>
	E AV		-0.1		10.1	W-40 C-1A-123 C
Температурный коэффициент выходного напряжения	TCU _O utav	%/°C	-0.08	±0.04	+0.08	@-40°C <t<sub>A<125°C</t<sub>
Время отклика	tr	μs		4	6	@ 90% of I _{PN}
Ширина полосы ²⁾	BW	KHz		1.1		@-3dB
Выходной шум	U	mV			15	

Записи:

1) Выходное напряжение Vout полностью пропорционально. Сдвиг и чувствительность зависят от на пряжения питания UC, формула выглядит следующим образом:

$$I_P = (5 / U_C * U_{OUT} - U_O) * 1 / S \text{ with } S \text{ in } (V/A)$$


1) Чтобы избежать перегрева шинопровода, магнитного кольца и Hall IC, частота тока первичной обм отки должна быть ограничена.


Общие данные:

Cheemi Technology Co., Ltd

Параметр	Значение
Рабочная температура ТА(°С)	-40 ~ +125
Температура хранения ТS(°С)	-55~ +125
Macca M(g)	80
Пластиковый материал	PBT+GF30
	ISO16750
Стандарты	GB/T28046
	IEC60068

Cheemi Technology Co., Ltd

Замечания:

- ➤ Когда первичный ток Ір течет в направлении положительной стрелки, выходное напряжение Vout больше напряжения сдвига Vo(см. стрелку, отмеченную на чертеже.)
- > Динамические характеристики(di/dt и время отклика) наилучше, когда шина полностью заполнена первичной перфорацией.
- ▶ Датчики с различными номинальными входными токами и выходными напряжениями могут быть настроены в соответствии с потребностям пользователя.

ПРЕДУПРЕЖДЕНИЕ: Неправильное подключение может привести к повреждению датчика.

5